SOME ASPECTS OF SOLUTIONS OF SPACE-TIME FRACTIONAL STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH OSGOOD CONDITION
نویسندگان
چکیده
In this paper we discuss the following problem with additive noise, \[\begin{cases} \frac{\partial^{\beta} u(t,x) }{\partial t}=-(-\triangle)^{\frac{\alpha}{2}} u(t,x)+b(u(t,x))+\sigma\dot{W}(t,x),~~t>0, \\u(0,x)=u_{0}(x),\end{cases},\] where $\alpha \in(0,2) $ and \beta \in (0,1)$, fractional time derivative is in sense of Caputo, $-(-\Delta)^{\frac{\alpha}{2}}$ Laplacian, $\sigma$ a positive parameter, $\dot{W}$ space-time white $u_0(x)$ assumed to be non-negative, continuous bounded. We study first equation on $[0,\,1]$ homogeneous Drichlet boundary condition show that solution blows up finite if only $b$ satisfies Osgood condition, \[ \int_{c}^{\infty} \frac{ds}{b(s)} <\infty \] for some constant $c>0$. then consider same whole line above satisfied whenever up.
منابع مشابه
The Fundamental Solutions of the Space, Space-Time Riesz Fractional Partial Differential Equations with Periodic Conditions
In this paper, the space-time Riesz fractional partial differential equations with periodic conditions are considered. The equations are obtained from the integral partial differential equation by replacing the time derivative with a Caputo fractional derivative and the space derivative with Riesz potential. The fundamental solutions of the space Riesz fractional partial differential equation (...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملSolving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2021
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.37418/amsj.10.12.2